The MOSFET Amplifier - COMMON SOURCE

- The output is measured at the drain terminal
- The gain is negative value
- Three types of common source
 - source grounded
 - with source resistor, R_S
 - with bypass capacitor, C_S

Common Source - Source Grounded

A Basic Common-Source Configuration:

Assume that the transistor is biased in the saturation region by resistors R_1 and R_2 , and the signal frequency is sufficiently large for the coupling capacitor to act essentially as a short circuit.

EXAMPLE

The transistor parameters are: V_{TN} = 0.8V, K_n = 0.2mA/V² and λ = 0.

Voltage Divider biasing:

Change to Thevenin Equivalent

$$R_{TH} = 198 \text{ k}\Omega$$

$$V_{TH} = 1.905 \text{ V}$$

DC ANALYSIS

1. Calculate the value of V_{GS}

$$V_{GS} - V_{TH} = 0$$
$$V_{GS} = 1.905 \text{ V}$$

2. Assume the transistor is biased in the saturation region, the drain current:

$$I_D = K_n (V_{GS} - V_{TN})^2$$

$$I_D = 0.2(1.905 - 0.8)^2 = 0.244 mA$$

3. Use KVL at DS loop

$$I_D R_D + V_{DS} - V_{DD} = 0$$

 $V_{DS} = V_{DD} - I_D R_D = 2.56 \text{ V}$

- 4. Calculate $V_{DSsat} = V_{GS} V_{TN} = 1.905 0.8 = 1.105 \text{ V}$
- 5. Confirm your assumption: $V_{DS} > V_{DSsat}$, our assumption that the transistor is in saturation region is correct

$$g_m = 2\sqrt{K_n I_{DQ}}$$
 $g_m = 0.442 \text{ mA/V}$

COMMON EMITTER GROUNDED

OUTPUT SIDE

- 1. Get the equivalent resistance at the output side, R_0
- 2. Get the v_o equation where $v_o = -g_m v_{be} R_0$

INPUT SIDE

- 3. Calculate R_i
- 4. Get v_{be} in terms of v_i

COMMON SOURCE GROUNDED

OUTPUT SIDE

- 1. Equivalent resistance at the output side, R_0
- 2. Get the v_0 equation where $v_0 = -g_m v_{gs} R_0$

 V_{DD} $I_{D} \bigvee R_{D}$ $R_{TH} \qquad \qquad \downarrow^{+} \qquad$

INPUT SIDE

3. Get v_{gs} in terms of v_i

OUTPUT SIDE

- 1. Equivalent resistance at the output side, $R_0 = r_o || R_D$
- 2. Get the v_o equation where $v_o = -g_m v_{gs} R_0 = -g_m v_{gs} (r_o || R_D)$

INPUT SIDE

3. Get v_{gs} in terms of $v_i \rightarrow v_{gs} = v_i$

4. $A_v v_i = v_o = -g_m v_{gs}(r_o||R_D) \leftarrow$ open circuit voltage

$$A_v v_i = -g_m v_i (r_o || R_D)$$

 $A_v = -g_m (r_o || R_D) \leftarrow$ open circuit voltage gain

- 1. The output resistance, $R_0 = R_D$
- 2. The output voltage:

$$v_o = -g_m v_{gs} (R_o) = -g_m v_{gs} (10) = -4.42 v_{gs}$$

3. Get v_i in terms of v_{gs}

$$v_{gs} = v_i$$

Equivalent circuit of a voltage amplifier

Equation of
$$v_o$$
: $v_o = -g_m v_{gs}(R_o) = -g_m v_{gs}(10) = -4.42 v_{gs}$

$$v_i = v_{gs}$$

$$A_v v_i = v_o \leftarrow open circuit voltage$$

$$A_{v}y'_{i} = -4.42 v_{gs} = -4.42 x'_{i}$$

 $A_v = -4.42 \leftarrow$ open circuit voltage gain

Equivalent circuit of a voltage amplifier

To find new voltage gain, v_o/v_s with input signal voltage source, v_s

$$v_i$$
 in terms of $v_s \rightarrow$ use voltage divider:
 $v_i = [R_i / (R_i + R_s)] * v_s = 0.9975 v_s$

 $v_o = A_v v_i$ \leftarrow because there is no load resistor $v_o = -4.42 \ (0.9975 \ v_s)$ $v_o/v_s = -4.41$