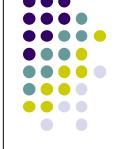
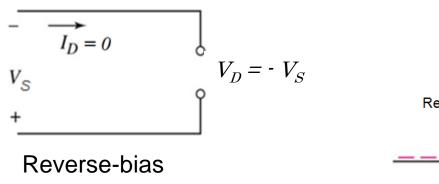
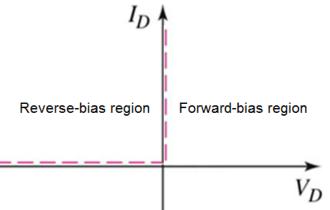

PN Junction Diode

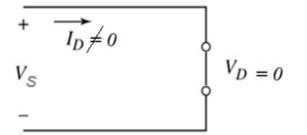
The basic PN junction diode circuit symbol, and conventional current direction and voltage polarity.

- The graphs shows the ideal I-V characteristics of a PN junction diode.
- The diode current is an exponential function of diode voltage in the forward-bias region.
- The current is very nearly zero in the reverse-bias region.

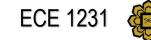




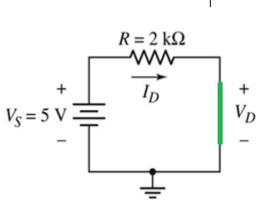



Analysis of PN Junction Diode in a Circuit

CIRCUIT REPRESENTATION OF DIODE – Model 1 (Ideal Diode)



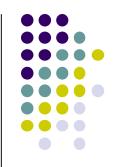
I-V characteristics of ideal model


Forward-bias

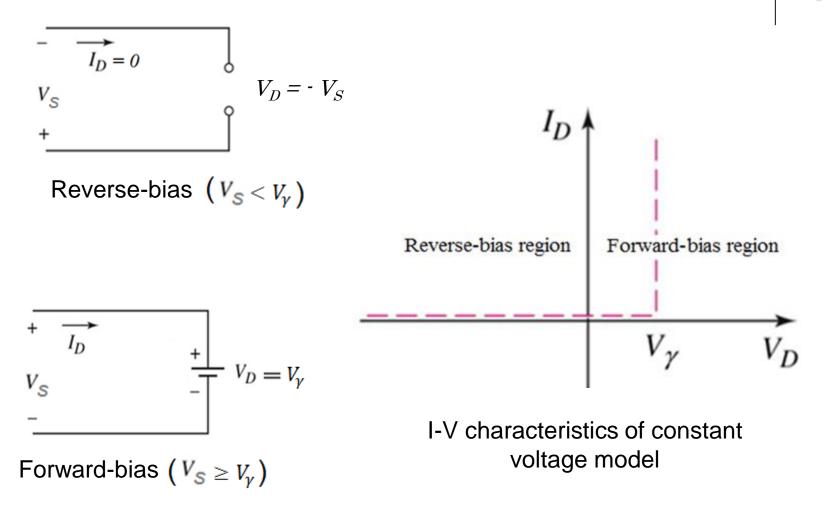
EXAMPLE: Determine the diode voltage and current in the circuit using <u>ideal model</u> for a silicon diode. Also determine the power dissipated in the diode.

The diode forward current

$$I_D = \frac{V_S}{R} = \frac{5 V}{2 K\Omega} = 2.5 mA$$



Voltage drop across diode $V_D = 0 V$

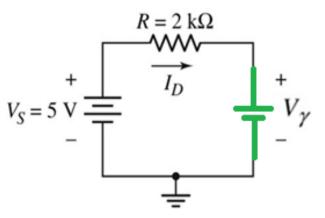

Power dissipation in the diode

$$P_D = V_D \times I_D = 0 W$$

CIRCUIT REPRESENTATION OF DIODE – Model 2 (Piecewise Linear Model)

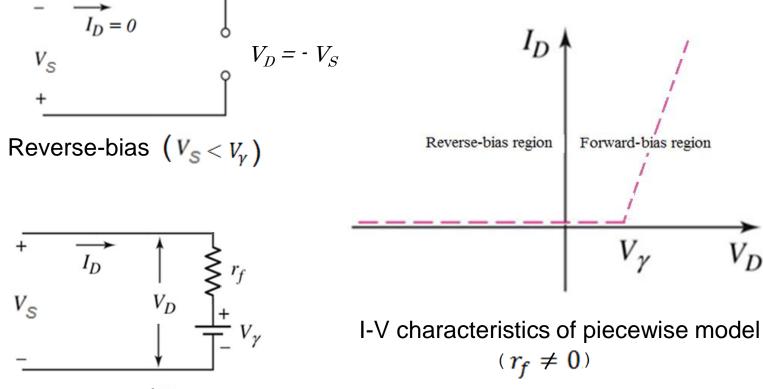
EXAMPLE: Determine the diode voltage and current in the circuit (using constant voltage model) for a silicon diode. Also determine the power dissipated in the diode. Consider the cut-in voltage $V_{\gamma} = 0.65$ V.

The diode forward current

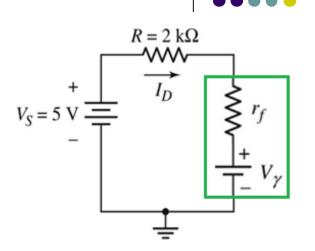

$$I_D = \frac{V_S - V_{\gamma}}{R} = \frac{(5 - 0.65)V}{2 \, K\Omega} = 2.175 \, mA$$

Voltage drop across diode $V_D = V_{\gamma} = 0.65 V$

Power dissipation in the diode


$$P_D = V_D \times I_D = 0.65 \ V \times 2.175 \ mA \cong 1.414 \ mW$$

CIRCUIT REPRESENTATION OF DIODE Model 3 (Piecewise Linear Model)


Forward-bias $(V_{S} \ge V_{\gamma})$

מ

 V_{γ}

EXAMPLE: Determine the diode voltage and current in the circuit using piecewise linear model for a silicon diode. Also determine the power dissipated in the diode. Consider the cut-in voltage $V_{\gamma} = 0.65$ V and the diode DC forward resistance, $r_f = 15 \Omega$.

The diode forward current

$$I_D = \frac{V_S - V_{\gamma}}{R + r_f} = \frac{(5 - 0.65)V}{2.015 \ K\Omega} \cong 2.159 \ mA$$

Voltage drop across diode

$$V_D = V_{\gamma} + I_D r_f = (0.65 + 2.159 \times 10^{-3} \times 15)V$$

Or, $V_D = 0.682 V$

Power dissipation in the diode

 $P_D = V_D \times I_D = 0.682 \text{ x} 2.159 \text{ mA} = 1.472 \text{ mW}$

Why do you need to use these models?

Diode Circuits: Direct Approach

$$I_D = I_S \left[e^{\left(\frac{V_D}{n \, V_T}\right)} - 1 \right]$$

Question

Determine the diode voltage and current for the circuit.

Consider
$$I_{S} = 10^{-13}$$
 A.

$$V_{PS} = I_D R + V_D$$

$$5 = (2 \times 10^3) (10^{-3}) [e^{(VD / 0.026)} - 1] + V_D$$

$$V_D = 0.619 V$$

ITERATION
METHOD

And $I_D = 2.19 \text{ mA}$

 $R = 2 k\Omega$

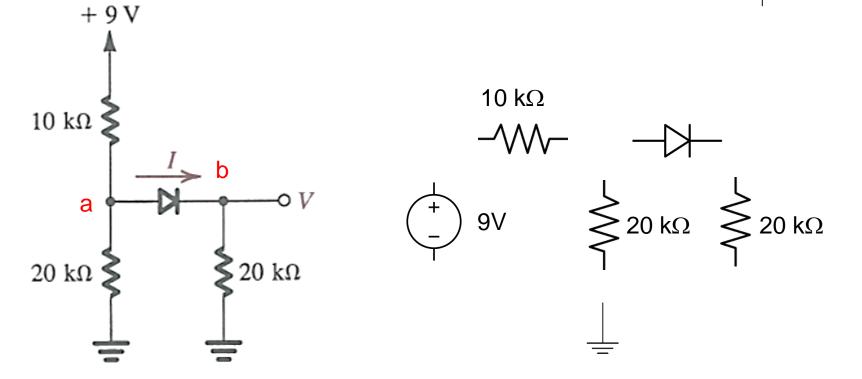
 I_D

+

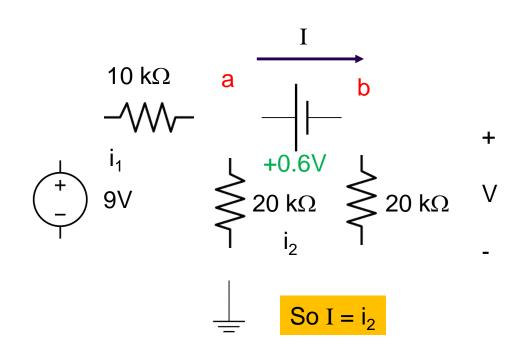
 V_D

+

 $V_{PS} = 5 \text{ V}$



	IDEAL MODEL	PIECEWISE LINEAR MODEL 2	PIECEWISE LINEAR MODEL 3	DIRECT APPROACH
Diode voltage V _D	0V	0.65 V	0.652 V	0.619 V
Diode current I _D	2.5 mA	2.175 mA	2.159 mA	2.19 mA

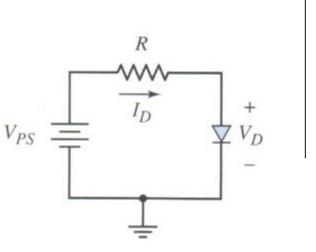


Calculate the values of the voltage V and the current, I, Given that $V\gamma = 0.6 V$

MESH 1 : 10 $i_1 + 20 (i_1 - i_2) - 9 = 0 \rightarrow 10 i_1 + 20 i_1 - 20 i_2 = 9 \rightarrow 30 i_1 - 20 i_2 = 9$

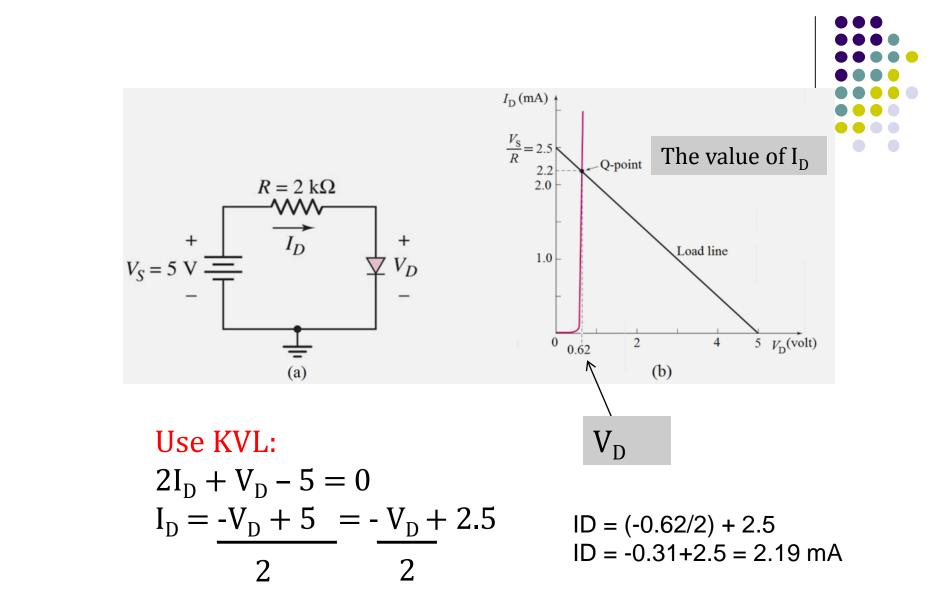
MESH 2 : 0.6 + 20 i_2 + 20 $(i_2$ - i_1) = 0 \rightarrow 20 i_2 + 20 i_2 - 20 i_1 = - 0.6 \rightarrow 40 i_2 - 20 i_1 = - 0.6 60 i_2 - 30 i_1 = -0.9

 $\begin{array}{l} 40 \ i_2 = \ 8.1 \\ i_2 = \ I = 0.2025 \ \text{mA} \end{array} \qquad \begin{array}{l} \text{Use Ohm's law to calculate V} \\ \text{V} = 20 \ (i_2) = 4.05 \ \text{V} \end{array}$



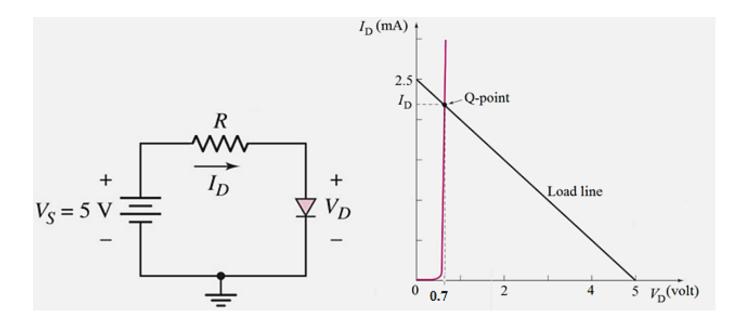
DC Load Line

- A linear line equation
- I_D versus V_D
- Obtain the equation using KVL

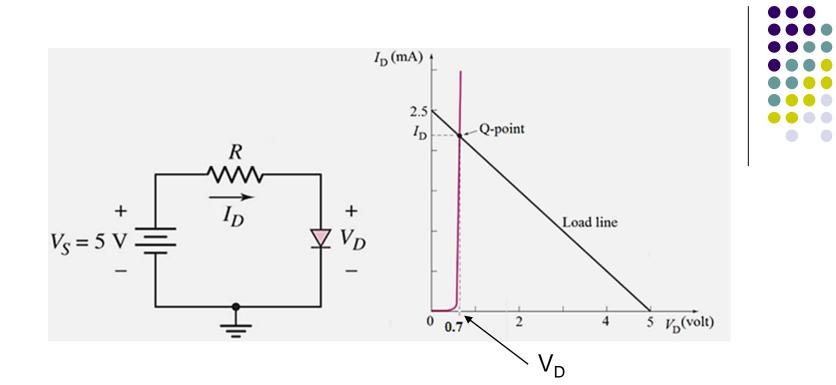

The exact relation among the circuit current, voltage and resistance can be expressed by Kirchhoff's voltage law (KVL) as:

$$V_{S} = I_{D}R + V_{D}$$

Or,
$$I_{D} = -\frac{V_{D}}{R} + \frac{V_{S}}{R}$$
$$(y = mx + c)$$



EXAMPLE


A diode circuit and its load line are as shown in the figure below

Design the circuit when the diode is operating in forward bias condition. Determine the diode current I_D and diode forward resistance r_f in the circuit using a piecewise linear model. Consider the cut-in voltage of the diode, $V\gamma = 0.65$ V.

$$I_{D}R + V_{D} - 5 = 0$$

$$I_{D} = -V_{D}/R + 5/R \quad \longleftarrow \quad y = mx + C$$

$$5/R = 2.5 mA$$

$$R = 2 k\Omega$$

at $V_D = 0.7V$ $I_D = (5 - 0.7) / 2 = 2.15 \text{ mA}$

Now, $V_D = V\gamma + I_D r_f$ 0.7 = 0.65 + 2.15 r_f $r_f = 0.05 / 2.15 \text{ mA} = 23.3 \Omega$