Chapter 4 Bipolar Junction Transistor

REMEMBER THIS

Current flow in the **<u>opposite direction</u>** of the electrons flow; same direction as holes

Transistor Structures

- The bipolar junction transistor (BJT) has three separately doped regions and contains two pn junctions.
- Bipolar transistor is a 3-terminal device.
 - Emitter (E)
 - Base (B)
 - Collector (C)

- The basic transistor principle is that the voltage between two terminals controls the current through the third terminal.
- Current in the transistor is due to the flow of both electrons and holes, hence the name **bipolar**.

3 Regions of Operation

> Active

Operating range of the amplifier. Base-Emitter Junction forward biased. Collector-Base Junction reverse biased

Cutoff

The amplifier is basically off. There is voltage but little current. Both junctions reverse biased

Saturation

The amplifier is full on. There is little voltage but lots of current. Both junctions forward biased

Е

в

OPERATIONS - npn

FORWARD ACTIVE MODE

- The base-emitter (B-E) junction is forward biased and the basecollector (C-B) junction is reverse-biased,.
- Since the B-E junction is forward biased, electrons from the emitter are injected across the B-E junction into the base $\rightarrow I_E$
- ➢ Once in the base region, the electrons are quickly accelerated through the base due to the reverse-biased C-B region → I_C

Some electrons, in passing through the base region, recombine with majority carrier holes in the base. This produces the current $\rightarrow I_B$

MATHEMATICAL EXPRESSIONS

$I_E = I_S [e^{VBE/VT} - 1] = I_S e^{VBE/VT}$

Based on KCL: $I_E = I_C + I_B$

No. of electrons crossing the base region and then directly into the collector region is a constant factor β of the no. of electrons exiting the base region $I_{C} = \beta I_{B}$

No. of electrons reaching the collector region is directly proportional to the no. of electrons injected or crossing the base region.

$$I_{\rm C} = \alpha I_{\rm E}$$

Ideally $\alpha = 1$, but in reality it is between 0.9 and 0.998.

Based on KCL: $I_E = I_C + I_B$ $I_C = \beta I_B$ $I_C = \alpha I_E$

$$I_{E} = \beta I_{B} + I_{B} = I_{B}(\beta + 1) \implies I_{E} = I_{B}(\beta + 1)$$

Now With $I_C = \beta I_B \rightarrow I_B = I_C / \beta$ Hence, $I_E = [I_C / \beta] (\beta + 1)$ $I_C = I_E [\beta / \beta + 1]$

Comparing with $I_C = \alpha I_E$ \longrightarrow $\alpha = [\beta / \beta + 1]$

EXAMPLE

Calculate the collector and emitter currents, given the base current and current gain. Assume a common-base current gain, $\alpha=0.97$ and a base current of $i_B=25~\mu A$. Also assume that the transistor is biased forward in the forward active mode.

Solution: The common-emitter current gain is $\beta = \frac{\alpha}{1-\alpha} = \frac{0.97}{1-0.97} = 32.33$

The collector current is $i_C = \beta i_B = 32.33 \times 25 = 808.25 \ \mu A$

And the emitter current is $i_E = i_B + i_C = 25 + 808.25 = 833.25 \ \mu\text{A}$

Examples

- EXAMPLE 1
- Given $I_B = 6.0 \mu A$ and $I_C = 510 \mu A$. Determine β , α and I_E

Answers: $\beta = \underline{85}$ $\alpha = \underline{0.9884}$ $I_E = \underline{516 \ \mu A}$

- EXAMPLE 2
- NPN Transistor
- Reverse saturation current Is = 10^{-13} A with current gain, $\beta = 90$.
- Based on $V_{BE} = 0.685V$, determine I_C , I_B and I_E

Answers: $I_E = 10^{-13} (e^{0.685/0.026}) = \underline{0.0277 A}$ $I_C = (90/91)(0.0277) = \underline{0.0274 A}$ $I_B = I_E - I_C = \underline{0.3 mA}$ BJT: Current-Voltage Characteristic I_C versus V_{CE}

Characteristics of Common-Emitter - npn

I-V characteristic of common-emitter BJT circuit, showing Early voltage and the finite output resistance, of the transistor

